How Speakers Work – Making Sound: Speaker Magnets
When the electrical current flowing through the voice coil changes direction, the coil’s polar orientation reverses. This changes the magnetic forces between the voice coil and the permanent magnet, moving the coil and attached diaphragm back and forth.
So how does the fluctuation make the speaker coil move back and forth? The electromagnet is positioned in a constant magnetic field created by a permanent magnet. These two magnets — the electromagnet and the permanent magnet — interact with each other as any two magnets do. The positive end of the electromagnet is attracted to the negative pole of the permanent magnetic field, and the negative pole of the electromagnet is repelled by the permanent magnet’s negative pole. When the electromagnet’s polar orientation switches, so does the direction of repulsion and attraction. In this way, the alternating current constantly reverses the magnetic forces between the voice coil and the permanent magnet. This pushes the coil back and forth rapidly, like a piston.
When the coil moves, it pushes and pulls on the speaker cone. This vibrates the air in front of the speaker, creating sound waves. The electrical audio signal can also be interpreted as a wave. The frequency and amplitude of this wave, which represents the original sound wave, dictates the rate and distance that the voice coil moves. This, in turn, determines the frequency and amplitude of the sound waves produced by the diaphragm.
Different driver sizes are better suited for certain frequency ranges. For this reason, loudspeaker units typically divide a wide frequency range among multiple drivers. In the next section, we’ll find out how speakers divide up the frequency range, and we’ll look at the main driver types used in loudspeakers.
没有评论:
发表评论